

KIT MOLECULAR MAYV/OROV BIO-MANGUINHOS

Teste para detecção de MAYARO (MAYV) e de Oropuche (OROV)

(2x48 reações) Conservar de -30 °C a -10 °C

Uso em diagnóstico in vitro

KIT MOLECULAR MAYV/OROV BIO-MANGUINHOS

(2x48 reações) Conservar de -30 °C a -10 °C Uso em diagnóstico *in vitro*

1. NOME COMERCIAL

Kit Molecular MAYV / OROV Bio-Manguinhos

2. FINALIDADE E MODO DE USO DO PRODUTO

O Kit Molecular MAYV / OROV Bio-Manguinhos baseia-se na tecnologia de PCR em tempo Real e é indicado para o processamento de amostras clínicas, previamente submetidas à etapa de extração de ácidos nucleicos. O produto desenvolvido é um ensaio triplex que detecta as regiões genômicas de Mayaro (MAYV) e de Oropouche (OROV), além do controle interno (CI) da reação. Destina-se ao diagnóstico e vigilância epidemiológica.

Produto destinado exclusivamente para uso em diagnóstico in vitro.

3. CONDIÇÕES DE ARMAZENAMENTO, TRANSPORTE E ESTABILIDADE DO PRODUTO

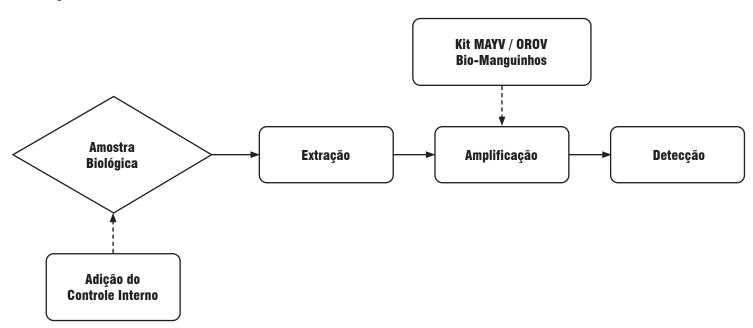
Conjunto de Reagentes: -30 °C a -10 °C.

Não são de responsabilidade do fabricante:

- Insumos armazenados fora da temperatura especificada;
- Os procedimentos da etapa de extração;
- Ocorrência de contaminação ambiental (amplicon);

Observação: * Todos os reagentes deverão ser armazenados nas temperaturas indicadas no rótulo externo, desde o ato do recebimento até a utilização do conjunto, observando a data de validade.

* Todas as sobras de reagentes deverão ser descartadas após a utilização do kit de acordo com os procedimentos de cada laboratório.


4. PRINCÍPIO DE FUNCIONAMENTO DO TESTE

A metodologia para amplificação e detecção dos alvos MAYV, OROV e CI tem como base a metodologia de PCR em tempo real.

Segue, abaixo, o fluxo metodológico:

- (a) Adição do Controle Interno (CI) nas amostras biológicas;
- (b) Etapa prévia de extração de ácido nucleico das amostras biológicas;
- (b) Amplificação do ácido nucleico;
- (c) Detecção do ácido nucleico por PCR em tempo real.

Esquema do Teste:

• Etapa de Extração

Vide Manual de Instruções do fabricante do Kit de Extração de ácido nucleico.

Nota: Se os ácidos nucleicos extraídos das amostras clínicas não forem imediatamente utilizados após a extração, deverão ser armazenados de -30 °C a -10 °C.

• Etapa de Amplificação e Detecção

A metodologia de amplificação específica do alvo com sondas marcadas com fluorescência é usada para determinar a presença dos alvos virais Mayaro, Oropouche e do Controle Interno da reação. Os equipamentos que podem ser utilizados na etapa de amplificação e de detecção são: *ABI 7500 Real Time PCR System, QuantStudio 6* Flex ou *QuantStudio 7* Flex da *Thermo Fisher Scientific*, em placas de 96 poços.

5. TIPOS DE AMOSTRAS, CONDIÇÕES PARA COLETA, MANUSEIO, PREPARO E PRESERVAÇÃO

Este produto deve ser utilizado com amostras clínicas coletadas em tubos contendo anticoagulante K2 EDTA (com gel de poliéster ou não) e/ou tubos de soro (com gel de poliéster ou não).

A temperatura do espaço físico destinado ao teste deve ser monitorada e mantida entre 10 °C e 25 °C.

6. DESCRIÇÃO DO PRODUTO

6.1 Relação dos componentes fornecidos com o produto

Conjuntos de reagentes	Componentes	Volume (µL)
Amulificação	Mistura de PCR	2 frascos com 220
Amplificação	Mix MAYV/OROV/CI	2 frascos com 365
	Controle Negativo	2 frascos com 15
Controles	Controle Positivo	2 frascos com 15
	Controle Interno	2 frascos com 500

6.2 Materiais necessários não fornecidos

- Kit de extração de ácido nucleico;
- Acessórios para automação das etapas de extração e de preparo da Mistura de PCR;
- Luva descartável sem talco;
- Sacos de descarte de lixo biológico;
- Microcentrífuga;
- Ponteiras para uso único, com filtro e estéreis, de 20μL, 100μL, 200μL e 1000μL;
- Pipetas de 20μL, 100μL, 200μL e 1000μL;
- Microtubo 1,5mL;
- Placa óptica de 96 reações;
- Selo óptico;
- Agitador Vortex.

6.3 Versão do software BioLaudos

BioLaudos a partir da versão 2.3.0.

7. ESTABILIDADE EM USO DO PRODUTO

O uso do KIT MOLECULAR MAYV / OROV BIO-MANGUINHOS processa:

- duas rotinas de 48 determinações, sendo detectados 46 amostras, 1 Controle Negativo e 1 Controle Positivo;
- ou uma rotina de 96 determinações, sendo detectados 94 amostras, 1 Controle Negativo e 1 Controle Positivo.

8. PROCEDIMENTOS DO ENSAIO

8.1. Procedimento para Utilização dos Controles.

- O Controle Interno (CI) deve ser homogeneizado (com auxílio de uma pipeta),
- Devem ser adicionados 10 µL de CI a cada amostra, antes do início da extração;
- Homogeneizar os controles negativo e positivo e extrair juntamente com as amostras clínicas.

8.2. Procedimento de Amplificação - ABI 7500 Real Time, QuantStudio 6 Flex ou QuantStudio 7 Flex em placa de 96 poços:

- Retirar do freezer os reagentes Mistura de PCR e Mix MAYV/OROV/CI;
- Aguardar o descongelamento do Mix MAYV/OROV/CI à temperatura ambiente;

• Imediatamente após o descongelamento e antes do preparo da mistura de PCR MAYV/ OROV/CI, homogeneizar e centrifugar (*spin*) os tubos de todos os insumos.

8.2.1 Preparo Manual das misturas de PCR MAYV/OROV/CI:

- Preparar a Mistura de PCR MAYV/OROV/CI de acordo com o número de reações a serem testadas; e seguindo as orientações da tabela abaixo.
- Adicionar em microtubo de 1,5mL os volumes de Mistura de PCR e de Mix MAYV/OROV/ CI de acordo a tabela abaixo:

	Volumes (μL)						
Conjunto de reagentes	1 reação	48 reações	96 reações				
Mistura de PCR	3,75	195	375				
Mix MAYV/OROV/CI	6,25	325	625				

^{*}Valores incluindo volume morto de reação

- Homogeneizar a mistura de PCR MAYV/OROV/CI com uma pipeta (evitando formação de bolhas) ou com o auxílio de um vortex;
- Fazer uma rápida centrifugação (*spin*);
- Distribuir a mistura de PCR MAYV/OROV/CI na placa de amplificação, de acordo com a sugestão dos esquemas abaixo.

8.2.2 Esquema de distribuição da mistura de PCR MAYV/OROV/CI na placa de amplificação para 1x 48 determinações.

- Adicionar 10µL da mistura de PCR MAYV/OROV/CI em cada poço da placa óptica.
- Distribuição do Controle Negativo, do Controle Positivo e das amostras dos pacientes, conforme indicado no esquema da placa de amplificação acima (para reação de 48 determinações)
 - o Adicionar 5 μL de Controle Positivo no poço H6;
 - o Adicionar 5 μL de Controle Negativo no G6.
 - o Adicionar 5 μL de amostras clínicas extraídas nos poços A1 até F6.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Amostra 1	Amostra 9	Amostra 17	Amostra 25	Amostra 33	Amostra 41						
В	Amostra 2	Amostra 10	Amostra 18	Amostra 26	Amostra 34	Amostra 42						
С	Amostra 3	Amostra 11	Amostra 19	Amostra 27	Amostra 35	Amostra 43						
D	Amostra 4	Amostra 12	Amostra 20	Amostra 28	Amostra 36	Amostra 44						
E	Amostra 5	Amostra 13	Amostra 21	Amostra 29	Amostra 37	Amostra 45						
F	Amostra 6	Amostra 14	Amostra 22	Amostra 30	Amostra 38	Amostra 46						
G	Amostra 7	Amostra 15	Amostra 23	Amostra 31	Amostra 39	CNEG						
Н	Amostra 8	Amostra 16	Amostra 24	Amostra 32	Amostra 40	CPOS						

• Legenda:

- CNEG Controle Negativo
- CPOS Controle Positivo

- Após a adição na placa óptica da mistura de PCR MAYV/OROV/CI, dos controles e das amostras dos pacientes, selar a placa óptica com selo óptico. <u>Utilizar o vortex para</u> homogeneizar as misturas por 4 minutos a 1200 rpm;
- Verificar se em todos os poços o material está homogeneizado com coloração azul claro;
- <u>Centrifugar a placa selada por 30 segundos</u> e iniciar a reação de PCR no equipamento.

8.2.3 Esquema de distribuição da mistura de PCR MAYV/OROV/CI na placa de amplificação para 1x 96 determinações.

- Adicionar 10µL da mistura de PCR MAYV/OROV/CI em cada poço da placa óptica.
- Distribuição do Controle Negativo, do Controle Positivo e das amostras dos pacientes, conforme indicado no esquema da placa de amplificação abaixo (para reação de 96 determinações).
 - o Adicionar 5 μL de Controle Positivo no poço H12;
 - o Adicionar 5 µL de Controle Negativo no G12.
 - o Adicionar 5 µL de amostras clínicas extraídas nos poços A1 até F12.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Amostra 1	Amostra 9	Amostra 17	Amostra 25	Amostra 33	Amostra 41	Amostra 49	Amostra 57	Amostra 65	Amostra 73	Amostra 81	Amostra 89
В	Amostra 2	Amostra 10	Amostra 18	Amostra 26	Amostra 34	Amostra 42	Amostra 50	Amostra 58	Amostra 66	Amostra 74	Amostra 82	Amostra 90
С	Amostra 3	Amostra 11	Amostra 19	Amostra 27	Amostra 35	Amostra 43	Amostra 51	Amostra 59	Amostra 67	Amostra 75	Amostra 83	Amostra 91
D	Amostra 4	Amostra 12	Amostra 20	Amostra 28	Amostra 36	Amostra 44	Amostra 52	Amostra 60	Amostra 68	Amostra 76	Amostra 84	Amostra 92
E	Amostra 5	Amostra 13	Amostra 21	Amostra 29	Amostra 37	Amostra 45	Amostra 53	Amostra 61	Amostra 69	Amostra 77	Amostra 85	Amostra 93
F	Amostra 6	Amostra 14	Amostra 22	Amostra 30	Amostra 38	Amostra 46	Amostra 54	Amostra 62	Amostra 70	Amostra 78	Amostra 86	Amostra 94
G	Amostra 7	Amostra 15	Amostra 23	Amostra 31	Amostra 39	Amostra 47	Amostra 55	Amostra 63	Amostra 71	Amostra 79	Amostra 87	CNEG
Н	Amostra 8	Amostra 16	Amostra 24	Amostra 32	Amostra 40	Amostra 48	Amostra 56	Amostra 64	Amostra 72	Amostra 80	Amostra 88	CPOS

• Legenda:

- CNEG Controle Negativo
- CPOS Controle Positivo
- Após a adição na placa óptica da mistura PCR MAYV/OROV/CI, dos controles e das amostras dos pacientes, selar a placa óptica com selo óptico. <u>Utilizar o vortex para</u> homogeneizar as misturas por 4 minutos a 1200 rpm;
- Verificar se em todos os poços o material está homogeneizado com coloração azul claro;
- Centrifugar a placa selada por 30 segundos e iniciar a reação de PCR no equipamento.

8.3. Amplificação e detecção

Para instruções de instalação e utilização do Template (.edt), necessário para a corrida do equipamento de PCR em tempo real, entrar em contato com o SAC/DIACM de Bio-Manguinhos pelo e-mail moleculares@bio.fiocruz.br ou telefone 0800 021 0310.

Para a análise adequada dos resultados, abrir o arquivo EDS após a corrida, utilizando o software **Design and Analysis Versão 2.60 (Thermo Fisher)**;

• Ligar o computador do equipamento de PCR em tempo real (ABI 7500 Real Time PCR System, QuantStudio 6 Flex ou QuantStudio 7 Flex);

- Colocar a placa óptica no equipamento de PCR em tempo real;
- Evitar tocar no fundo da placa. Certificar-se de que a posição A1 da placa está no canto superior esquerdo;
- No computador do equipamento, clicar ícone para abertura do *software* do equipamento 7500 Real Time PCR System, QuantStudio 6 ou QuantStudio 7;
- Após a inicialização do software, clicar no ícone Template (abaixo);
- Abrir o template: Deteccão MAYV/OROV/CI.edt;
- Antes de iniciar a corrida, salvá-la;
- Clicar no ícone Start Run;
- Após o término da corrida, salvar a corrida (.eds) e copiá-la em um pendrive.

Para a instalação do software BioLaudos para geração de laudo, entrar em contato com o SAC/DIACM de Bio-Manguinhos.

9. OBTENÇÃO DOS RESULTADOS

9.1 Critérios de Aceitação do Controle Negativo e do Controle Positivo

Abaixo estão relacionados os critérios de aceitação para aprovação da rotina de PCR para os Controles Negativo e Positivo.

Controle	Ct	Resultados
Negativo	Não detectado para todos os alvos Mayaro e Oropouche	Rotina válida
Negativo	Detectado com Ct ≤ 40 para qualquer um dos alvos Mayaro e/ ou Oropouche	Rotina inválida: Repetir o teste. Possível contaminação.
	Ct ≤ 32 para os alvos Mayaro e/ou Oropouche	Rotina válida
Positivo	Ct >32 (Não Detectado) para os alvos Mayaro e Oropouche	Rotina inválida: Repetir o teste, possível perda de amostra e/ou problema durante a preparação das misturas de PCR

9.2 Interpretação dos resultados

Na tabela abaixo, estão descritos os critérios de aceitação para detecção dos alvos com relação ao valor de Ct obtido no ensaio de PCR em tempo real, onde se pode definir a análise como detectado ou não detectado.

Alvo	Valor de Ct	Resultado
MAYV	Ct ≤ 40	Detectado
OROV	Ct ≤ 40	Detectado
Controle Interno	Ct ≤ 35	Detectado

Na tabela abaixo, estão descritos os critérios de interpretação de cada alvo com relação ao diagnóstico (detectado, não detectado ou inconclusivo).

Alvo MAYV	Alvo OROV	Alvo Controle nterno	Resultado
Detectado	Não Detectado	Detectado ou Não Detectado	MAYV Detectado
Não Detectado	Detectado	Detectado ou Não Detectado	OROV Detectado
Detectado	Detectado	Detectado ou Não Detectado	MAYV e OROV Detectados
Não Detectado	Não Detectado	Detectado	MAYV e OROV Não Detectados
Não Detectado	Não Detectado	Não detectado	Resultado Inválido* Repetir amostra

- Todos os resultados deverão ser analisados de acordo com os critérios descritos nos itens "9.1 - Critérios de aceitação do Controle Negativo e do Controle Positivo" e "9.2 -Interpretação de resultados";
- Quando os alvos MAYV e OROV apresentarem o resultado "Detectado", o alvo Controle Interno poderá não ser avaliado para a conclusão do ensaio;
- *Quando o alvo Controle Interno apresentar o resultado "Não Detectado", e os alvos MAYV e OROV também forem "Não Detectados", o teste para esta amostra individual é considerado Inválido. Neste caso, é imprescindível que a repetição do ensaio seja realizada a partir de uma nova extração e uma nova amplificação com o Mix MAYV/OROV/CI;
- Em caso de repetição do ensaio, se o resultado se mantiver, a amostra deverá ser encaminhada, para análise, ao Laboratório de Referência.

10. USUÁRIO PRETENDIDO

Profissional técnico capacitado para processamento de amostras clínicas, utilização de insumos/kit e manuseio de equipamentos necessários para o diagnóstico molecular baseado na PCR em Tempo Real.

11. INTERFERENTES E LIMITAÇÕES DO ENSAIO

Não utilizar tubos com anticoagulante heparina, pois interferem na etapa de PCR.

12. CARACTERÍSTICAS DE DESEMPENHO

12.1 Especificidade analítica e clínica

Não houve reação cruzada quando analisadas amostras verdadeiras positivas para ZIKV, DENV-1, DENV-2, DENV-3, DENV-4, HIV, HCV, HBV, MALÁRIA, VÍRUS INFLUENZA A, VÍRUS INFLUENZA B, Sars-CoV 2, HMPV, RSV, HRV, ADENOVIRUS, VZV, MPXV, VÍRUS DA FEBRE AMARELA, SLV, ILHV, ROCIOV, WNV, VIRUS BUÇUQUARA, VIRUS CACIPACORÉ. O Kit Molecular MAYV / OROV / Controle Interno apresentou especificidade analítica de 100% e especificidade clínica de 99,9%.

12.2 Sensibilidade Analítica

As análises PROBIT (IBM SPSS Statistics v16.0), considerando uma taxa de 95% de positividade e um intervalo de confiança (IC) de 95%, apresentaram sensibilidade estimada 1,33 cópias/reação para o alvo MAYARO e com uma taxa de 95% de positividade e um intervalo de confiança (IC) de 95%, apresentaram sensibilidade estimada de 0,90cópias/reação para o alvo OROPOUCHE.

A quantificação das amostras do painel foi realizada através da técnica de PCR digital. As diluições seriadas foram extraídas utilizando o equipamento extrator *Chemagic Prime (Revvity)*. Os resultados obtidos são aplicáveis somente para este kit e os números de cópias definidos por outros métodos não são necessariamente equivalentes.

12.3 Sensibilidade Clínica

Quando testadas amostras verdadeiras positivas, o Kit Molecular MAYV / OROV Bio-Manguinhos apresentou 100% de concordância para os vírus Mayaro (MAYV) e vírus Oropouche (OROV).

12.4 Precisão

Para cálculo e avaliação da precisão do teste, foram utilizadas nos ensaios, replicatas de 6 diferentes concentrações, da diluição seriada da amostra clínica, previamente quantificada por PCR Digital. Foram obtidos os valores do coeficiente de variação (CV) de diluições para cada um dos alvos MAYV e OROV.

Kit Molecular MAYV / OROV Bio-Manguinhos – ALVO MAYARO								
Cópias/mL 5,58E+03 1,12E+03 5,58E+02 2,79E+02 1,40E+02 6,98E+01								
CV (%)	0,02	1,57	3,03	1,60	3,71	1,79		

Kit Molecular MAYV / OROV Bio-Manguinhos – ALVO OROPOUCHE								
Cópias/mL 1,53E+04 3,06E+03 6,12E+02 3,06E+02 1,53E+02 7,65E+01								
CV (%)	0,58	0,76	2,43	0,32	1,92	1,03		

12.5 Exatidão

Conforme esperado, os valores de exatidão expressos pelo Erro Padrão Relativo (EPR %) mínimo foi de -2,31% e máximo de 1,1 % para o alvo MAYV, mínimo foi de -2,06 e máximo de 1,89% para o alvo OROV

13. RISCOS RESIDUAIS IDENTIFICADOS

Ao manusear qualquer um dos reagentes, observe as precauções necessárias. A qualidade dos resultados obtidos depende do cumprimento às boas práticas de laboratório tais como:

- Utilizar equipamento de proteção individual (EPI): luvas descartáveis (sem talco) e jaleco em todas as etapas do teste;
- Após o uso, desprezar ponteiras, tubos, placas, reagentes, insumos/produtos no descarte de risco biológico;
- Desprezar a placa óptica, após a amplificação e detecção, em descarte biológico;
- Todas as sobras de reagentes deverão ser descartadas após a utilização de cada módulo do kit, de acordo com os procedimentos de cada laboratório;
- Não usar reagentes com a validade vencida;
- Nunca misturar componentes de lotes diferentes;
- O teste deve ser usado somente para monitoramento *in vitro* e USO PROFISSIONAL, de acordo com as instruções fornecidas no kit.

14. DESCARTE DO PRODUTO

Após o uso, os componentes do produto devem ser descartados em recipientes destinados ao lixo biológico.

Os reagentes da etapa de extração (manual ou automatizada) devem ser descartados de acordo com a orientação do fabricante.

15. TERMOS E CONDIÇÕES DE GARANTIA DA QUALIDADE DO PRODUTO

Este produto foi desenvolvido por meio de procedimentos registrados e em instalações de acordo com normas internas de Biossegurança e Boas Práticas de Laboratório. O fabricante garante a qualidade do kit mediante seu uso adequado, descrito nestas Instruções de Uso, bem como orientações dadas durante o treinamento fornecido ao usuário.

16. RAZÃO SOCIAL DO FABRICANTE E SERVIÇO DE ATENDIMENTO AO CONSUMIDOR

Anvisa 80142170072

Responsável técnico: Edimilson Domingos da Silva, CRBio-02 Nº 021433/02

Fabricante:

Instituto de Tecnologia em Imunobiológicos - Bio-Manguinhos Av. Brasil, 4365 – Manguinhos – CEP: 21040-360 – Rio de Janeiro-RJ CNPJ: 33.781.055/0015-30 – Indústria Brasileira

Regularizado por:

Fundação Oswaldo Cruz – Fiocruz Av. Brasil, 4365 - CEP: 21040-900 - Rio de Janeiro - RJ CNPJ 33.781.055/0001-35

Orientações técnicas adicionais a respeito deste produto poderão ser obtidas junto ao:

Instituto de Tecnologia em Imunobiológicos – Bio-Manguinhos/FIOCRUZ

CNPJ: 33.781.055/0015-30

Av. Brasil. 4365 - CEP: 21040-360 - Rio de Janeiro - RJ SAC: 0800 021 0310 ou moleculares@bio.fiocruz.br

Para versão impressa deste manual, entre em contato com o SAC.

17. REFERÊNCIAS BIBLIOGRÁFICAS

Diagne CT, Bengue M, Choumet V, Hamel R, Pompon J, Missé D. Mayaro Virus Pathogenesis and Transmission Mechanisms. Pathogens. 2020 Sep 8;9(9):738. doi: 10.3390/pathogens9090738. PMID: 32911824; PMCID: PMC7558846.

Waggoner JJ, Rojas A, Mohamed-Hadley A, de Guillén YA, Pinsky BA. Real-time RT-PCR for Mayaro virus detection in plasma and urine. J Clin Virol. 2018 Jan; 98:1-4. doi: 10.1016/j. jcv.2017.11.006. Epub 2017 Nov 21. PMID: 29172075; PMCID: PMC5742299.

Zhang Y, Liu X, Wu Z, Feng S, Lu K, Zhu W, Sun H, Niu G. Oropouche virus: A neglected global arboviral threat. Virus Res. 2024 Mar; 341:199318. doi: 10.1016/j.virusres.2024.199318. Epub 2024 Jan 16. PMID: 38224842; PMCID: PMC10827532.

Travassos da Rosa JF, de Souza WM, Pinheiro FP, Figueiredo ML, Cardoso JF, Acrani GO, Nunes MRT. Oropouche Virus: Clinical, Epidemiological, and Molecular Aspects of a Neglected Orthobunyavirus. Am J Trop Med Hyg. 2017 May;96(5):1019-1030. doi: 10.4269/ ajtmh.16-0672. Epub 2017 Feb 6. PMID: 28167595; PMCID: PMC5417190

> DI: EMISSÃO INICIAL Texto: MI MAYORO 001 (TME0496 001MAN)