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Abbreviations

QC, quality control; CUSUMs, cumulative sums; EWMAs, exponentially 
weighted moving averages; ARLs, average run lengths; 1

3S
, 1 value 

exceeding 3 SD; 2
2S

, 2 consecutive results exceeding 2 SD (both in the 
same direction); 4

1S
, 4 consecutive results exceeding 1 SD (all in the 

same direction); 10x, 10 consecutive results on 1 side of the center line; 
R

4S
, 2 consecutive results with 1 greater than 2 SD and 1 less than −2 SD
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ABSTRACT
Background: Multirules are often employed to monitor quality 
control (QC). The performance of multirules is usually determined 
by simulation and is difficult to predict. Previous studies have not 
provided computer code that would enable one to experiment with 
multirules. It would be helpful for analysts to have computer code to 
analyze rule performance.

Objective: To provide code to calculate power curves and to investigate 
certain properties of multirule QC.

Methods: We developed computer code in the R language to simulate 
multirule performance. Using simulation, we studied the incremental 

performance of each rule and determined the average run length and 
time to signal.

Results: We provide R code for simulating multirule performance. We also 
provide a Microsoft Excel spreadsheet with a tabulation of results that can 
be used to create power curves. We found that the R

4S
 and 10x rules add 

very little power to a multirule set designed to detect shifts in the mean.

Conclusion: QC analysts should consider using a limited-rule set.

Keywords: quality control, error detection, false rejection, Westgard 
rules, multirules, simulation

 

Quality control (QC) is used to monitor processes to detect 

departures from normal operations or instability. Any change 

in the distribution of the measured output suggests the 

presence of assignable cause variation that is synonymous 

with instability. QC processes use statistical methods to de-

tect a signal (assignable cause variation) in the presence of 

background noise (common cause variation).1

Various methods are available to monitor QC processes. 

The simplest and most common rule is to use 3 SD (sigma) 

limits, classify the process as unstable, and begin trouble-

shooting when results exceed these limits (1
3S

 rule). 

Although such rules have the advantage of simplicity, they 

are not very sensitive and often fail to detect small shifts in 

the mean. For this reason, many laboratories use multirules 

to increase the sensitivity of QC monitoring.

Multirules are created by applying several different criteria 

for QC failure. For example, 2 consecutive results on 1 side 

of the 2-sigma limit might be considered a failure and be 

used in addition to the 3-sigma limit. The process would fail 

if either rule were triggered. 

Although these rules increase sensitivity, they have several 

disadvantages. First, each rule increases the probability of 

false rejection; this probability can be substantial when many 

rules are applied. Second, it is difficult to predict the perform-

ance of the monitoring system in response to rule adjust-

ments. Power curves have been published for a standard 

set of rules (Westgard rules),2, 3 but the list of potential rules 

is very long, and it is impractical to publish power curves for 

each case. It would be helpful if analysts had simple tools that 

could be used to predict the behavior of rule adjustments.

Power curves can be calculated, but these calculations re-

quire advanced mathematical methods (Markov analysis) that 

are not accessible to most laboratorians. Also, power curves 

can be generated using simulation, which is much more 
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accessible. The published power curves were produced by 

simulation; however, to our knowledge, the code was not 

published. Analysts could easily experiment with QC rule ad-

justments if such code were available. Thus, the objective of 

this study was to provide code to calculate power curves and 

to investigate certain properties of multirule QC.

Materials and Methods

The probability of QC failures was estimated through simu-

lation, using the statistical software R with the R package 

Propagate.4, 5 We selected R because it is widely used and 

freely available. The R code is available in the Appendix. 

Briefly, we simulated the probability of failure of Westgard 

rules after shifts of 1 to 6 SDs. For each shift, we generated 

1,000,000 measurements and then applied the Westgard 

rules to estimate the probability of failure.

Rule definitions are provided in Table 1. For multirules, 

which involve more than 1 rule, failure was triggered if any 

rule failed. For example, multirule 1
3S

/2
2S

 could be triggered 

if measurement fails 1
3S

 or 2
2S

 rules.

We calculated the power curve for each individual rule as a 

function of shift size. Also, we calculated the probability that 

each rule would fail when combined in a rule set.

Results

The results of our simulation are presented in Figure 1; 

also, those results are tabulated in Supplementary Table 1. 

Supplementary Table 1 provides the probability of detecting 

a shift for a wide range of shift sizes and sampling plans (ie, 

repeat levels).

The error-detection rate for each individual rule is pre-

sented in Table 2. Individual rules are generally in-

sensitive to small shifts (ie, shifts smaller than 2 SD). 

Combined rules increase the error-detection rate for 

small shifts (Table 3) but also increase the probability 

of false rejection. For example, a 1
3S

 rule has a 15.91% 

probability of detecting a 2 SD shift in the mean and 

has a false-rejection rate of 0.28% (Table 2). The full set 

of Westgard rules (final column, Table 3) has a 29.13% 

chance of detecting a 2 SD shift, but the false-rejection 

rate (ie, the probability of a rule failure when the shift size 

is 0) is 0.63%. The R
4S

 rule does not increase the stat-

istical power for detecting shifts but does increase the 

probability of false rejection (Tables 2 and 3).

When rules are combined and applied in the order of 1
3S

, 

2
2S

, 4
1S

, 10x, and R
4S

, errors are most often detected by the 

1
3S

 and 2
2S

 rules (Table 4). The 4
1S

, 10x, and R
4S

 rules con-

tribute very little to the statistical power for error detection 

(Table 3).

Table 1. Rule Definitions

Rule Definition

1
3S

Run fails if measurement is 3 SD greater or 3 SD less than the 
mean

2
2S

Run fails if 2 consecutive measurements are 2 SD greater than or 
2 SD less than the mean

4
1S

Run fails if 4 consecutive measurements are 1 SD greater than or 
1 SD less than the mean

10x Run fails if 10 consecutive measurements are greater than or 1 SD 
less than the mean

R
4S

Run fails if a measurement is 4 SD greater than the mean and the 
next measurement is 4 SD less than the mean, or vice versa
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Figure 1

Power curves for combinations of sensitizing rules. The graph 

is the detection rate for a single quality-control (QC) level. Delta 

indicates the shift size in SDs; 1
3S

, 1 value exceeding 3 SD; 2
2S

, 2 

consecutive results exceeding 2 SD (both in the same direction); 

4
1S

, 4 consecutive results exceeding 1 SD (all in the same 

direction); 10x, 10 consecutive results on 1 side of the center line; 

R
4S

, 2 consecutive results with 1 greater than 2 SD and 1 less 

than −2 SD. 
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The run-length distribution (ie, the number of QC events 

before a rule failure) is skewed to the right, and the 

average run length decreases with the size of the shift 

(Figure 2). For example, the number of events between 

false rejections (shift size = 0) ranges from 0 to 1500, 

whereas the number of events required to detect a shift of 

3 SD ranges from 0 to 4.

Discussion

We calculated power curves for Westgard multirules. Our re-

sults match those of other researchers.3 Also, we provided 

tabulated results for a wide range of shift sizes and repeat 

levels. The tabulated results provide a convenient way to 

Table 2. The Probability of Error Detection by Westgard Rules and Size of Shifta 

Size Shift Rule

1
3S

2
2S

4
1S

10x R
4S

0 SD  .28%  .09%  .11%  .10% .10%
1 SD  2.28%  2.17%  3.33%  3.41% .04%
2 SD 15.91% 16.65% 15.93%  8.78% 0%
3 SD 49.95% 38.42% 23.58%  9.92% 0%
4 SD 84.11% 48.30% 24.91% 10.00% 0%
5 SD 97.70% 49.89% 25.00% 10.00% 0%

1
3S

, 1 value exceeding 3 SD; 2
2S

, 2 consecutive results exceeding 2 SD (both in the same direction); 4
1S

, 4 consecutive results exceeding 1 SD (all in the same direction); 10x, 10 
consecutive results on 1 side of the center line; R

4S
, 2 consecutive results with 1 greater than 2 SD and 1 less than −2 SD.

aThe results are for 1 quality control (QC) level. Each rule is considered separately. For example, a 2
2S

 rule (applied alone with no rules) would have a 16.65% chance of detecting a shift 
of 2 SDs. 

Table 3. Probability that a QC Run with 1 Level Will Fail, by Westgard Rule Combination and Size Of 
Shifta 

Size Shift Rule Set

1
3S

1
3S

/2
2S

1
3S

/2
2S

/4
1S

1
3S

/2
2S

/4
1S

/10x 1
3S

/2
2S

/4
1S

/10x/ R
4S

0 SD  .27%  .36%  .46%  .55%  .63%
1 SD  2.28%  3.82%  6.02%  7.69%  7.71%
2 SD 15.84% 24.04% 28.90% 29.12% 29.13%
3 SD 50.01% 58.62% 59.26% 59.26% 59.26%
4 SD 84.12% 85.73% 85.74% 85.74% 85.74%
5 SD 97.72% 97.77% 97.77% 97.77% 97.77%

QC, quality control; 1
3S

, 1 value exceeding 3 SD; 2
2S

, 2 consecutive results exceeding 2 SD (both in the same direction); 4
1S

, 4 consecutive results exceeding 1 SD (all in the same 
direction); 10x, 10 consecutive results on 1 side of the center line; R

4S
, 2 consecutive results, with 1 greater than 2 SD and 1 less than −2 SD.

Table 4. Distribution of QC (1-Level) Failures when All Westgard Rules are Applieda 

Shift Size Rule

1
3S

2
2S

4
1S

10x R
4S

TOTAL

0 SD 41.76% 13.56% 16.33% 12.79% 15.56% 100%
1 SD 30.46% 20.47% 27.30% 21.43% 0.35% 100%
2 SD 54.52% 28.14% 16.52% 0.83% 0.01% 100%
3 SD 84.26% 14.67% 1.07% 0.00% 0.00% 100%
4 SD 98.01% 1.99% 0.00% 0.00% 0.00% 100%
5 SD 100.00% 0.00% 0.00% 0.00% 0.00% 100%

QC, quality control; 1
3S

, 1 value exceeding 3 SD; 2
2S

, 2 consecutive results exceeding 2 SD (both in the same direction); 4
1S

, 4 consecutive results exceeding 1 SD (all in the same 
direction); 10x, 10 consecutive results on 1 side of the center line; R

4S
, 2 consecutive results, with 1 greater than 2 SD and 1 less than −2 SD. 

aGiven a shift of 3 SD, the 1
3s

 rule is triggered 84% of the time, the 2
2S

 rule is triggered 15% of the time, and the 4
1S

 rule is triggered 1% of the time.
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look up probabilities of error detection, a way that is easier 

than interpolating from figures.

We provided R code for our simulations. The R code en-

ables analysts to verify our calculations and to modify the 

code, to conduct experiments to see how rule adjustments 

would affect QC performance. R is freely available and 

is widely used in the statistical community—we chose to 

implement our simulations in R so that our code would be 

widely accessible.

We made several observations about the performance of 

multirule QC. Additional rules increase the ability of the QC 

monitoring process to detect small shifts, but extra rules 

also increase the probability of false rejection. The increase 

in sensitivity is modest. For example, the combination of the 

1
3S

 and 2
2S

 rules provides an 8% increase in the probability 

of detecting a 2 SD shift, relative to the 1
3S

 rule only (16% 

vs 24%). As shown in Table 3, the application of additional 

rules has diminishing returns. For example, using all 5 

rules increases the probability of detecting a 2 SD shift to 

29% but also increases the probability of false rejection to 

0.63%. Thus, there is a tradeoff between the improvements 

in shift detection and false rejection. Some statisticians rec-

ommend against using multirules because other monitoring 

methods, such as cumulative sums (CUSUMs) or expo-

nentially weighted moving averages (EWMAs), can provide 

better error detection rates with a lower false-rejection 

rate.1, 6 However, to our knowledge, the CUSUMs and 

EWMAs methods are rarely used by clinical laboratories.

Calculations of the false-rejection rate are based on a very 

narrow definition of false rejection. False rejection occurs 

only if a QC rule is violated when the shift size is 0. Many 

small shifts are inconsequential; troubleshooting small shifts 

is unlikely to be productive. Thus, the formal definition of 

false rejection underestimates the rate of unproductive 

rule violations. It might be more reasonable to categorize 

shifts as important and unimportant using a critical-shift 

threshold. For example, if the critical shift size was 1 SD, 

a rule set with all 5 rules would have a 7.71% chance 

of false rejection (Table 3). This rate of false rejection is 

unacceptably high.

We focused on detection of shifts. Our results show that 

the R
4S

 rule should not be included in a rule set designed 

to detect shifts. The R
4S

 rule may be effective for detecting 

changes in dispersion. However, when included in a rule set 

designed to detect shifts, the R
4S

 rule only increases the 

probability of false rejection without increasing the prob-

ability of shift detection (Tables 2 and 3).

QC practice in clinical laboratories differs from practice in 

other industries. In other industries, control charts are used 

to monitor dispersion (R or s charts) and location (X charts 

or Xbar charts).1,7,8 Clinical laboratories do not use charts to 
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Figure 2

The run-length distribution for all Westgard rules. The run length is the number of quality control (QC) events before a rule failure occurs. The 

graph shows results for a single QC level. A rule failure when the shift size is 0 (upper left panel) is a false rejection. The graphs show that 

the run-length distribution is skewed to the right and the average run length decreases with the shift size. Note that the horizontal scale is 

different on each graph.
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monitor dispersion.9 The R
4S

 rule might be a useful compo-

nent in a multirule approach for monitoring changes in dis-

persion; however, we are not aware of multirule approaches 

for monitoring dispersion. Thus, it is unclear whether R
4S

 

rule has any usefulness in the multirule sets used in clinical 

laboratories.

Similarly, we question whether the 10x rule is useful. 

According to our calculations, it contributes very little to the 

statistical power for error detection yet adds to the rate of 

false rejection. In our experience, many laboratories use the 

10x rule as a warning and do not initiate troubleshooting 

when the rule is violated. This practice is problematic. In a 

regulated environment, there should be clear rules regarding 

signals and responses.

We did not explore the performance when rules are 

applied across multiple QC levels. For example, a 2
2S

 

rule could be classified as violated when results from 2 

separate QC levels are higher than 2 SD. Clearly, cross-

level rules would increase the false-rejection rate but, 

depending on the correlation between levels, cross-level 

rules could also increase the error detection rate. Multiple 

levels should be monitored with multivariate QC. However, 

although this approach has been adopted by other indus-

tries, it has not been adopted by clinical laboratories—this 

is a subject for future research.

Average run lengths (ARLs) are generally used to evaluate 

QC performance in other industries. The run length is the 

number of trials before a rule failure occurs. We presented 

data on the run-length distribution for various shift sizes. 

Our data show that run-length distributions are highly vari-

able, particularly when shift sizes are small. Thus, for small 

shift sizes, the time to detection can be highly variable. The 

run length distribution is an important consideration in a QC 

plan. Our R code can be used to explore the impact of rule 

selection on the run-length distribution.

Our study provides insight into the performance of 

multirules and provides computer code that can be used 

to further explore such rules. Although multirules increase 

the ability to detect shifts, we question whether this is the 

optimal approach. Also, it is unclear whether the traditional 

set of multirules is optimal. Ideally, rules would be optimized 

based on the relative cost of false rejections and failure to 

detect errors. 

Exploring modifications to multirules is difficult. Although we 

have provided code that can be easily modified to conduct 

experiments to determine the impact of modified rules, this 

modification may be difficult for many analysts. Thus, we 

question whether using multirules is the optimal approach. 

In conclusion, our study provides insights into the perform-

ance of multirule QC and provides tools that analysts can 

use to further explore the performance of multirule QC. LM
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